Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 2 entries in the Bibliography.


Showing entries from 1 through 2


2020

Statistical Distribution of Bifurcation of Earth s Inner Energetic Electron Belt at tens of keV

We present a survey of the bifurcation of the Earth s energetic electron belt (tens of keV) using 6-year measurements from Van Allen Probes. The inner energetic electron belt usually presents one-peak radial structure with high flux intensity at L < ∼2.5, which however can be bifurcated to exhibit a double-peak radial structure. By automatically identifying the events of bifurcation based on RBSPICE data, we find that the bifurcation is mostly observed at ∼30–100 keV with a local flux minimum at L=∼2.0–∼2.3 under relatively quiet geomagnetic conditions, typically after a significant flux enhancement due to radial diffusion or injections to L<∼2.5. The bifurcation typically lasts for a few days during quiet periods until interrupted by injections or radial diffusion. The L-shell, energy and seasonal dependences of the occurrence of bifurcated inner electron belt support the important role of electron scattering by very-low-frequency transmitter waves in the bifurcation formation.

Hua, Man; Ni, Binbin; Li, Wen; Ma, Qianli; Gu, Xudong; Fu, Song; Cao, Xing; Guo, YingJie; Liu, Yangxizi;

Published by: Geophysical Research Letters      Published on: 12/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL091242

Inner electron radiation belt; Flux bifurcation; VLF transmitter waves; Statistical distribution; Van Allen Probes

Properties of Lightning Generated Whistlers Based on Van Allen Probes Observations and Their Global Effects on Radiation Belt Electron Loss

Lightning generated whistlers (LGWs) play an important role in precipitating energetic electrons in the Earth s inner radiation belt and beyond. Wave burst data from the Van Allen Probes are used to unambiguously identify LGWs and analyze their properties at L < 4 by extending their frequencies down to ~100 Hz for the first time. The statistical results show that LGWs typically occur at frequencies from 100 Hz to 10 kHz with the major wave power below the equatorial lower hybrid resonance frequency, and their wave amplitudes are typically strong at L < 3 with an occurrence rate up to ~30\% on the nightside. The lifetime calculation indicates that LGWs play an important role in scattering electrons from tens of keV to several MeV at L < ~2.5. Our newly constructed LGW models are critical for evaluating the global effects of LGWs on energetic electron loss at L < 4.

Green, A.; Li, W.; Ma, Q.; Shen, X.-C.; Bortnik, J.; Hospodarsky, G.;

Published by: Geophysical Research Letters      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL089584

lightning generated whistlers; electron precipitation; Inner radiation belt; hiss; VLF transmitter waves; global distribution; Van Allen Probes



  1